A170
PHOTOELECTRIC
ANGLE ENCODER
(A170-A, A170-AV, A170-F)

Precision photoelectric angle encoder A170 is used for precise angular displacement measurement of rotary tables, dividers, comparators, antennas and other high precision equipment. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
The stainless steel case of the encoder is mounted using screws. The angle encoder is connected to the motor shaft or spindle via coupling,
 available optionally.
Three versions of output signals are available:

- A170-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A170-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A170-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 20, \mathrm{x} 25, \mathrm{x} 50$ and x 100 . The modification with distance-coded reference marks is available.

- Mechanical Data

- Line number:

- Number of output pulses per revolution for A170-F:
- Reference signal:
- standard (S)
- distance-coded (K) for $z=18000$
- distance-coded (K) for $z=36000$
- Permissible mech. speed
\bullet Max. operating speed (depends on number of output pulses)
- Accuracy

18000, 36000
$18000,36000,90000$
$180000,360000,450000$,
900000,1800000
one per shaft revolution
36 per shaft revolution
72 per shaft revolution
$\leq 1000 \mathrm{rpm}$
300 to 500 rpm
$\pm 2.5 ; \pm 5.0$ arc. sec.

- Permissible shaft load:

$$
\begin{aligned}
& \text { - axial } \\
& \text { - radial }
\end{aligned}
$$

- Starting torque at $20^{\circ} \mathrm{C}$
- Rotor moment of inertia
- Protection (IEC 529)
- Maximum weight without cable
- Operating temperature
- Storage temperature
- Maximum humidity
(non condensing)
- Permissible vibration (55 to 2000 Hz)
$\leq 30 \mathrm{~N}$
$\leq 30 \mathrm{~N}$
$\leq 0.012 \mathrm{Nm}$
$<3.7 \times 10^{-4} \mathrm{kgm}^{2}$
IP64
3.5 kg
$0 \ldots+70^{\circ} \mathrm{C}$
$-30 \ldots+85{ }^{\circ} \mathrm{C}$

98 \% $\leq 100 \mathrm{~m} / \mathrm{s}^{2}$

Electrical Data

Version

- Power supply
- Light source
- Incremental signals
$\mathbf{A 1 7 0 - A} \sim 11 \mu \mathrm{App}$
$+5 \mathrm{~V} \pm 5 \% / 100 \mathrm{~mA}$ max
LED
Two sinusoidal I_{1} and I_{2}. Amplitude at $1 \mathrm{k} \Omega$ load:
$-\mathrm{I}_{1}=7 \ldots 16 \mu \mathrm{~A}$
$-\mathrm{I}_{2}=7 \ldots 16 \mu \mathrm{~A}$

A170-AV $\sim 1 \mathrm{Vpp}$
$+5 \mathrm{~V} \pm 5 \% / 120 \mathrm{~mA}$ max
LED
Differential sine
$+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$
Amplitude at 120Ω load:

- $\mathrm{A}=0.6 \ldots 1.2 \mathrm{~V}$
- $\mathrm{B}=0.6 \ldots 1.2 \mathrm{~V}$

A170-F ■ப TTL
$+5 \mathrm{~V} \pm 5 \% / 150 \mathrm{~mA}$ max
LED
Differential square-wave U1//U1 and U2/U2. Signal
levels at 20 mA load current:

- low (logic " 0 ") $\leq 0.5 \mathrm{~V}$
- high (logic " 1 ") $\geq 2.4 \mathrm{~V}$

One quasi-triangular +R and its One differential square-wave $\mathrm{U} 0 / \overline{\mathrm{U0}}$ complementary- R per revolution. per revolution. Signal Signal magnitude at 120Ω load: levels at 20 mA load current:
$-\mathrm{R}=0.2 \ldots 0.8 \mathrm{~V} \quad-$ low $($ logic " 0 ") $\leq 0.5 \mathrm{~V}$
(usable component)
$(-3 \mathrm{~dB}$ cutoff $) \geq 180 \mathrm{kHz}$
+B lags +A for clockwise rotation (viewed from encoder mounting side)

- high (logic " 1 ") $\geq 2.4 \mathrm{~V}$
$160-1300 \mathrm{kHz}$ (depends on interpolation f actor)
U2 lags U1 for clockwise
rotation (viewed from
encoder mounting side)
$<0.5 \mu \mathrm{~s}$
1 m , without connector
25 m
- Maximum cable length

1 m , without connector 5 m

1 m , without connector 25 m

Note: 1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed. 2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

