METROLOGY

The company under the name JSC "Precizika Metrology" began work after the change of name of the Lithuanian - American Joint Venture "Brown \& Sharpe - Precizika". The company has a proud history of old traditions in the leadership of design and production of metrological equipment. Its workforce has been involved for over fifty years in the supply of measuring technology and systems to automate factories as well as in the development of optical scale manufacturing technolog
In 2000, the production process was certified to fully meeting the requirements of EN ISO 9002:1994, in 2003 - EN ISO 9001:2000.
The company's goal is to consistently supply high quality products and services to meet customer demands on a timely basis. The company's main products are linear and angular glass scale gratings, and the linear and rotary displacement measuring systems,
JSC "Precizika Metrology" represents worldwide known companies and suppliers of measuring equipment, CNC centers, executes installation and services of them, trains the users, and executes upgrading of used CMM and manual cutting machine-tools.

A170
PHOTOELECTRIC ANGLE ENCODER

Žirmūnu str. 139, LT-09120 Vilinus, Lithuania
sales@precizika.lt
Tel. : +370 (5) 2363683
Fax: : 370 (5) 2363609
mw. precizika.lt

Precision photoelectric angle encoder A170 is used for precise angular displacement measurement of rotary tables, dividers, comparators, antennas and other high precision equipment. It provides information about the value and direction of motion. The encoder is used in auomatic control, on-line gauging, process monitoring systems, etc. The stainless steel case of the encoder is mounted using screws. The angle encoder is connected to the motor shaft or spindle via coupling, available optionally. Three versions of output signals are available:

- A170-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A170-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A170-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \times 2, \times 5, \times 10, \times 20, \times 25, \times 50$ and $\times 100$
The modification with distance-coded reference marks is available
-米 (1) (1) (1) (1)

A170

RECOMMENDED APPLICATIONS

MECHANICAL DATA

Line number	18000, 36000	Permissible shaft load:	
Number of output pulses per revolution for A170H-F	18000; 36000; 72000; 90000; 180000; 360000; 720000; 450000; 900000; 1800000; 3600000	$\begin{aligned} & \text { - axial } \\ & \text { - radial } \end{aligned}$	$\begin{aligned} & \leq 30 \mathrm{~N} \\ & \leq 30 \mathrm{~N} \end{aligned}$
		Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.012 \mathrm{Nm}$
		Rotor moment of inertia	$<3.7 \times 10^{-4} \mathrm{kgm}^{2}$
Reference signal: - standard (S) distance-coded (K) for $\mathrm{z}=18000$ distance-coded (K) for $\mathrm{z}=36000$	one per shaft 36 per shaft revolution 72 per shaft revolution	Protection (ECC 529)	IP64
		Maximum weight without cable	3.5 kg
		Operating temperature	0...+70 ${ }^{\circ} \mathrm{C}$
Permissible mech. speed	$\leq 1000 \mathrm{rpm}$	Storage temperature	$-30 . . .85^{\circ} \mathrm{C}$
Max. operating speed (depends on number of output pulses)	300 to 500 rom	Maximum humidity (non condensing)	98%
		Permissible vibration	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Accuracy	$\pm 2.0 ; \pm 2.5 ; \pm 5.0$ arc. sec	Perrissible shock (6ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

VERSION	A170-A $\sim_{11}{ }^{\text {A App }}$	A170-AV $\sim 1{ }^{\text {Vpp }}$	A170-F U $^{\text {TtiL }}$
Supply voltage ($\mathrm{U}_{\text {P }}$)	$+5 \mathrm{~V} \pm 5 \% 100 \mathrm{mAmax}$.	$+5 \mathrm{~V} \pm 5 \% 120$ mAmax.	$+5 \mathrm{~V} \pm 5 \%$; 150 mA max.
Light source	LED	LED	LED
Incremental signals	Two sinusoidal I_{1} and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & 11=7 \ldots 16 \mu \mathrm{~A} \\ & 12=7 \ldots 16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & A=0.6 \ldots 1.2 \mathrm{~V} \\ & B=0.6 \ldots 1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1 $\overline{\sqrt{1}}$ and $\mathrm{U} 2 \sqrt{2}$. Signal levels at 20 mA load current: Iow (logic "0") $\leq 0.5 \mathrm{~V}$ high (logic "1") 2.4 V
Reference signal	One quasi-triangular I_{0} peak per revoIution. Signal magnitude at 1 k ${ }^{2}$ load: $-\mathrm{I}_{0}=2 \ldots 8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load $\mathrm{R}=2 \ldots 8 \mathrm{~V}$ (usable component)	One differential square-wave Uo/UO per revolution. Signal levels at 20 mA load current: ow (logic "0") > 0.5 V high (logic "1" $>2.4 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB} \mathrm{outoffif} \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB} \mathrm{autaff)} \geq 180 \mathrm{kHz}$	(160-2500 kHz (depends on interpolation factor)
Direction of signals	I_{2} lags I for clockwise rotation (viewed from encoder mounting side)	+B lags +A for clockwise rotation (viewed from encoder mounting side)	U2 lags U1 with clockwise rotation (viewed from encoder mounting side)
Maximum nise and fall time	-	-	< 0.5 us
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals	I_{2}		
Note:			
1. Maximum working rotation 2. If cable extension is used,	speed (with proper encoder counting) power supply conductor cross-section	s limited by maximum operating frequency should not be smaller than $0.5 \mathrm{~mm}^{2}$.	and maximum mechanical rotation speed.

2. If cable extension is used, power supply conductor cross-section should not be smaller than 0.5 mm .

ACCESSORIES

$\left.\begin{array}{l|l|l|l|l|l|l|}\hline \text { CONNECTORS FOR CABLE } & \begin{array}{l}\text { B12 } \\ \text { 12-pin round } \\ \text { connector }\end{array} & \begin{array}{l}\text { C9 } \\ \text { 12-pin round } \\ \text { connector }\end{array} & \begin{array}{l}\text { C12 } \\ \text { 12-pin round } \\ \text { connector }\end{array} & \begin{array}{l}\text { D9 } \\ \text { 9-pin flat } \\ \text { connector }\end{array} & \begin{array}{l}\text { D15 } \\ \text { 15-pin flat } \\ \text { connector }\end{array} & \begin{array}{l}\text { RS10 } \\ \text { 10-pin round } \\ \text { connector }\end{array}\end{array} \begin{array}{l}\text { ONC } \\ \text { 10-pin round } \\ \text { connector }\end{array}\right]$

ORDER FORM

