

The company under the name JSC "Precizika Metrology" began work after the change of name of the Lithuanian - American Joint Venture "Brown \& Sharpe - Precizika". The company has a proud history of old traditions in the leadership of design and production of metrological equipment. Its workforce has been involved for over fifty years in the supply of measuring technology and systems to automate factories as well as in the developmen opical scale manufacturing technology.
In 2000, the production process was certified to fully meeting the requirements of EN ISO 9002:1994, in 2003 - EN ISO 9001:2000.
The company's goal is to consistently supply high quality products and services to meet customer demands on a timely basis. The company's main products are linear and angular glass scale gratings, and the linear and rotary displacement measuring systems.
JSC "Precizika Metrology" represents worldwide known companies and suppliers of measuring equipment, CNC centers, executes installation and services of them, trains the users, and executes upgrading of used CMM and manual cutting machine-tools.

A170H

PHOTOELECTRIC ANGLE ENCODER

Žirmūnu str. 139, LT-09120 Vilinus, Lithuania
sales@precizika.lt
Tel.: +370 (5) 2363683
Fax: 370 (5) 2363609
muv. precizika.lt

Precision photoelectric angle encoder A170H is used for precise angular displacement measurement of rotary tables, dividers, compar
ators, antennas and other high precision equipment. It provides information about the value and direction of the motion. The encoder is ators, antennas and other high precision equipment. It provides information about the value and direction of the motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc. The encoder has a riid
collar coupling. Encoder is coupled via shaft collar. Three versions of output signals are available:

- A170H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$
- A170H-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A170H-F - square-wave signals (TLL) with integrated subdividing electronics
for interpolation $\times 1, \times 2, \times 5, \times 10, \times 20, \times 25, \times 50$ and $\times 100$.
The modification with distance-coded reference marks is available.
-米 1 (1) ©(C)

A170H

RECOMMENDED APPLIGATIONS

Res

MECHANIGAL DATA

ELECTRICAL DATA

version	A170H-A $\sim 11 \mu$ App	A170H-AV $\sim 1 \mathrm{Vpp}^{\text {pr }}$	A170H-FПTTL
Supply voltage (U_{P})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$;
Max, supply current (without load)	100 mA	120 mA	150 mA
Ligh source	LED	LED	LED
Incremental signals	Two sinusoidal I and I_{2} Amplitude at $1 \mathrm{k} \Omega$ load $-11=7 \ldots 16 \mu \mathrm{~A}$ $-12=7 . .16 \mu \mathrm{~A}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned}-A & =0.6 \ldots 1.2 \mathrm{~V} \\ -B & =0.6 \ldots 1.2 \mathrm{~V}\end{aligned}$	Differential square-wave U1 $\overline{V_{1}}$ and $U 2 / \overline{V_{2}}$ Signal levels at 20 mA load current: - - ow (logic "0" $0 \leq 0.5 \mathrm{~V}$
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-1_{0}=2 \ldots 8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load $=0.2 \ldots . .8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revo lution. Signal levels at 20 mA load current:
Maximum operating frequency	$(-3 \mathrm{~dB} \mathrm{autoff}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB} \mathrm{autoff)}) \geq 180 \mathrm{kHz}$	$160-2500 \mathrm{kHz}$ (depends on interpolation factor)
Direction of signals	1, lags 1 , for clockwise rotation (viewed from encoder mounting side)	+B lags +A for clockwise rotation (viewed from encoder mounting side)	U2 lags U1 with clockwise rotation (viewed from encoder mounting side)
Maximum nise and fall time			< 0.5 us
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals	I_{2}		

1. Maximum working rotation speed (with proper encooder counting) is linited by maximum operating frequency and maximum mechanical rotation speed. 2. If cable extension is used, power supoly conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

